Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982980

RESUMO

Asthma is an inflammatory disease whose etiology remains unclear. Its characteristics encompass a wide range of clinical symptoms, inflammatory processes, and reactions to standard therapies. Plants produce a range of constitutive products and secondary metabolites that may have therapeutic abilities. The aim of this study was to determine the effects of Senna obtusifolia transgenic hairy root extracts on virus-induced airway remodeling conditions. Three cell lines were incubated with extracts from transformed (SOA4) and transgenic (SOPSS2, with overexpression of the gene encoding squalene synthase 1) hairy roots of Senna obtusifolia in cell lines undergoing human rhinovirus-16 (HRV-16) infection. The effects of the extracts on the inflammatory process were determined based on the expression of inflammatory cytokines (IL-8, TNF-α, IL-1α and IFN-γ) and total thiol content. The transgenic Senna obtusifolia root extract reduced virus-induced expression of TNF, IL-8 and IL-1 in WI-38 and NHBE cells. The SOPSS2 extract reduced IL-1 expression only in lung epithelial cells. Both tested extracts significantly increased the concentration of thiol groups in epithelial lung cells. In addition, the SOPPS2 hairy root extract yielded a positive result in the scratch test. SOA4 and SOPPS2 Senna obtusifolia hairy root extracts demonstrated anti-inflammatory effects or wound healing activity. The SOPSS2 extract had stronger biological properties, which may result from a higher content of bioactive secondary metabolites.


Assuntos
Interleucina-8 , Senna (Planta) , Humanos , Interleucina-8/metabolismo , Senna (Planta)/genética , Cicatrização , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Interleucina-1/metabolismo , Raízes de Plantas/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-36981614

RESUMO

Inflammation is closely related to asthma and its defining feature: airway remodeling. The aim of this study was to determine the effects of extracts of normal (NR) and transformed (TR) Leonotis nepetifolia roots on respiratory cells and against the gingival epithelium. Extracts from NR and TR roots were added to lung fibroblast, bronchial epithelial and gingival fibroblast cell lines, in the presence of HRV-16 infection, to determine their impact on inflammation. The expression of inflammatory cytokines (IL-6, IL-1ß, GM-CSF and MCAF) as well as total thiol contents were assessed. The TR extract inhibited rhinovirus-induced IL-6 and IL-1ß expression in all tested airway cells (p < 0.05). Additionally, the extract decreased GM-CSF expression in bronchial epithelial cells. The tested extracts had positive effects on total thiol content in all tested cell lines. The TR root extract demonstrated wound healing potential. While both tested extracts exhibited anti-inflammatory and antioxidative effects, they were stronger for the TR extract, possibly due to higher concentrations of beneficial metabolites such as phenols and flavonoids. Additionally, wound healing activity was demonstrated for the TR root extract. These results suggest that TR root extract may become a promising therapeutic agent in the future.


Assuntos
Citocinas , Lamiaceae , Humanos , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-6 , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Lamiaceae/metabolismo , Inflamação/tratamento farmacológico
3.
Int J Dev Biol ; 55(6): 633-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21948712

RESUMO

Decorin, a proteoglycan, interacts with extracellular matrix proteins, growth factors and receptors. Decorin expression and spatio-temporal distribution were studied by RT-PCR and immunofluorescence, while decorin function was examined by blocking antibodies in the early chick embryo. Decorin was first detectable at stage XIII (late blastula). During gastrulation (stage HH3-4), decorin fluorescence was intense in epiblast cells immediately adjacent to the streak, and in migrating cells. Decorin fluorescence was intense in endoderm and strong at mesoderm-neural plate surfaces at stage HH5-6 (neurula). At stage HH10-11 (12 somites), decorin fluorescence was intense in myelencephalon and then showed distinct expression patterns along the myelencephalon axes by stage HH17. Decorin fluorescence was intense in neural crest cells, dorsal aorta, heart, somite and neuroepithelial cells apposing the somite, nephrotome, gut and in pancreatic and liver primordia. Antibody-mediated inhibition of decorin function affected the head-to-tail embryonic axis extension, indicating that decorin is essential for convergent extension cell movements during avian gastrulation. Decorin was also essential for retinal progenitor cell polarization, neural crest migration, somite boundary formation and cell polarization, mesenchymal cell polarization and primary endoderm displacement to the embryo periphery. The embryonic blood vessels were deformed, the dorsal mesocardium was thinned and the cardiac jelly was abnormally thickened in the heart. Decorin is known to modulate collagen fibrillogenesis, a key mechanism of matrix assembly, and cell proliferation. Decorin also appears to be essential for the coordination of cell and tissue polarization, which is an important feature in organ patterning of the embryo.


Assuntos
Embrião de Galinha/metabolismo , Decorina/biossíntese , Animais , Anticorpos Bloqueadores/imunologia , Blástula/metabolismo , Movimento Celular , Polaridade Celular , Embrião de Galinha/irrigação sanguínea , Decorina/imunologia , Decorina/metabolismo , Endoderma/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Imunofluorescência , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesoderma/metabolismo , Mielencéfalo/embriologia , Crista Neural/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Somitos/metabolismo
4.
Cells Tissues Organs ; 186(4): 243-56, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17785960

RESUMO

Perlecan is a major heparan sulfate proteoglycan that binds growth factors and interacts with various extracellular matrix proteins and cell surface molecules. The expression and spatiotemporal distribution of perlecan was studied by RT-PCR, immunoprecipitation and immunofluorescence in the chick embryo from stages X (morula) to HH17 (29 somites). Combined RT-PCR and immunohistochemistry demonstrated the expression of perlecan as early as stage X and its presence may be fundamental to the first basement membrane assembly on the epiblast ventral surface at stage XIII (blastula). Perlecan fluorescence was intense in the cells ingressing through the primitive streak and was strong lining the epiblast ventral surface lateral to the streak at stage HH3-4 (gastrula). At stage HH5-6 (neurula), perlecan fluorescence was low in the neuroepithelium and stronger in the apical surface of the neural plate. At stage HH10-11 (12 somites), perlecan fluorescence was intense in the neuroepithelium and was then essentially nondetectable in the neuroepithelium, and the intensity had shifted to the basement membranes of encephalic vesicles by stage HH17. Perlecan immunofluorescence was intense in neural crest cells, strong in pharyngeal arches, intense in thymus and lung rudiments, intense in aortic arches and in dorsal aorta, strong in lens and retina and intense in intraretinal space and in optic stalk, strong in the dorsal mesocardium, myocardium and endocardium, strong in dermomyotome, low in sclerotome in somites, intense in mesonephric duct and tubule rudiments, intense in the lining of the gut luminal surface. Inhibition of the function of perlecan by blocking antibodies showed that perlecan is crucial for maintaining basement membrane integrity which mediates the epithelialization, adhesive separation and maintenance of neuroepithelium in brain, somite epithelialization, and tissue architecture during morphogenesis of the heart tube, dorsal aorta and gut. An intriguing possibility is that perlecan, as a signaling molecule that modulates the activity of growth factors and cytokines, participates in the signaling pathways that guide gastrulation movements and neural crest cell migration, proliferation and survival, cardiac cell proliferation and paraxial mesoderm (somitic) cell proliferation and segmentation.


Assuntos
Embrião de Galinha , Proteoglicanas de Heparan Sulfato/metabolismo , Animais , Embrião de Galinha/citologia , Embrião de Galinha/embriologia , Embrião de Galinha/crescimento & desenvolvimento , Embrião de Galinha/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteoglicanas de Heparan Sulfato/genética , Morfogênese , RNA Mensageiro/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...